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Assessment of Fouling release coatings
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Analysis of field data

* Counting of diatoms in microfluics works automatically (particle detection)

* Counting of field slides requires manpower as objects on surface are heterogeneous

* Initial DDT/HUDT/EG6 dataset: 4 repl x 9 chem x 60 fov = 2160 Fields of view

* Time for man. analysis per field of view: 5-10 min (depending on coverage, 16 MPix image)
=> 2160 x 7 min = 252 h of counting (30 days by first and second semester students)

* To be analyzed in 2018/2019: >600 slides, (>36000 FOV = 525 days of counting)
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Deep learning neuronal network

Reduction of free parameters

Challenge similar to (less parameters -> faster analysis)

automated driving

" ARTIFICIAL INTELLIGENCE
A technique which enables machines

Artificial Intelligence to mimic human behaviour

y

MACHINE LEARNING

Subset of Al technique which use
isti to enable

to improve with experience . —
DEEP LEARNING
Subset of ML which make the
computation of multi-layer neural
network feasible
Google Sequential, deep
Inception v3 learning neuronal

network

* Goal : Counting diatoms on field samples with particulates and other artifacts present

* Binary classifier -> Not only detection of presence of an object (yes/no) but probability for occurrence
in a specified region

* Runs entirely on graphic cards

* Fast analysis (=1s per image)

Collaboration with B. Rosenhahn, Institute for Information Technology, Leibnitz-University Hannover
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Learning dataset

Microscopy data and learning sets

Coordinates Phase Contrast Fluorescence

Y

Learning dataset :

Initial labeling could not be used due to inaccurate labels (edge of diatom or even next to diatom in close vicinity)
Diatom positions assigned by different users (different accuracy, required careful selection)

Expert relabeling with markers in the center of the diatoms were necessary

Data augumentation (Contrast, brightness, mirroring, rotation)

Krause, Koc, Rosenhahn, Rosenhahn, Envir. Sci. Technol. 2020, 54(16), 10022
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Counting of field data with deep learning
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* Deep learning counts as good as humans
* Human counting depends on person

* Time required for 600 images was 8 minutes (0.8 s/image)
(would take 70 h by human)

and DL works non-supervised!

Krause, Koc, Rosenhahn, Rosenhahn, Envir. Sci. Technol. 2020, 54(16), 10022
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From image recognition to semantic segmentation

Laboratory data (24 h) Field data (5 days)
. (Ne perminuta)
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Visual assessment and CCPe Annotation

ELSEVIER Computers & Geosciences 32 (2006) 1259-1269 ——
ASTM D6990-20 ® www.elsevier.com/locate/cageo

Standard Practice for Evaluating Biofouling
Resistance and Physical Performance of Marine Coral Point Count with Excel extensions (CPCe): A Visual Basic

Coating Systems program for .the determmat%on of coral and substrz;:ne coverage
using random point count methodology

Significance and Use

Kevin E. Kohler*, Shaun M. Gill

National Coral Reef Institute, Nova Southeastern University Oceanographic Center, Dania Beach, FL 33004, USA

5.1 This practice is designed to provide guidance to a panel inspector for quantitative and consistent
evaluation of coating performance from test panels coated with marine antifouling coating systems. The
practice assesses performance of coating systems based on both antifouling and physical properties. Received 19 July 2005; received in revised form 17 November 2005; accepted 21 November 2005

5.2 The user is cautioned that the results are representative for the specific region and time of year in
which the specimens are immersed. It shall be noted that interpretation of results will depend on the
geographical location where the test is conducted, whether the coated specimens are exposed either
totally or partially immersed, under static or dynamic conditions, and position and orientation.

Occurrence based Area based
5.3 Simultaneous testing of a proven standard antifouling coating system (known to minimize fouling
accumulation, for example, containing biocide or active agent(s) to prevent fouling settiement/growth) in ( ra n d 0 m p oi nt a n n otat i O n ) ( m a n u a I S eg m e nta t i o n )

the specific marine environment shall be included as a reference to assist in interpretation of results. In

addition, a negative control (inert surface susceptible to heavy fouling) shall be included on a regular Mw M ‘“ “’"*"‘*“""“‘""""' " 'Widm

basis. For the exposure to be valid, the surface of the negative control should show heavy fouling o q o nores |

relative to the standard system(s). 5 3 ! »
o L

5.4 Marine coating systems that produce positive results relevant to the standard system(s) show g 4 x 2 ] £/

potential for use in protecting underwater marine structures.

5.5 The format can be utilized independent of exposure protocol and coating type, and provides the
end user with a consistent practice and format for reporting of performance rating.

— Quantitative and consistent visual evaluation of coatings
— Appropriate consideration of positive and negative controls
— Method should work for a broad range of coating types
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From image recognition to semantic segmentation

Arborescent Bryozoan = —
- . 1,5% Barnacle
Solitary Tunicate 1,5%
0,5% Sponge
3,4%
Cnidaria Soft
Bare
3,7%

Colonial Tunicate
10,7%

Data base from FIT : 486 panel images
Point assignment according to CPCe (24300 data points)

Challenges for automated image analysis

* Complex composition of fouling organisms

* Mixture of species at certain spots

* Vicinity of randomly chosen CPCe points can
be heterogeneous

* Imbalanced panel depending species .
distribution

Calcareous Tubeworm
14,6% \

L. Krause, E. Manderfeld, P. Gnutt, L. Vogler, A. Wassick, K. Richard, M. Rudolph, K. Hunsucker, G. Swain, B. Rosenhahn, A. Rosenhahn, Biofouling 2023, 39(1), 64
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Unet architecture for semantic segmentation

* Not only object detection and counting but semantic
segmentation

* Labeling of entire panels is time demanding and induces
a species imbalance

* Separated Panel into patches of =5% of the total panel
size

* =300 randomly chosen fully manually segmented images
(13 fully manually segmented panels)

Pre-trained encoder . ] . o ]
EfficientNet B2 Table 1: Performance of adapted U-Net model architectures. Results for image tiles from validation set. Best performing
configurations for a metric are highlighted.
e | Configuration |Accuracy [IoU F1 Precision [Recall
U-Net (baseline) 0.959  [0.614  0.746  |0.758  |0.739
|
Yo =g | t — Conv 3x3, BN, ReLU6 + Pretrained EfficientNet encoder 0.974 0735  0.841  |0.842  |0.841
| ki I [I _’I“I — MBConv (EfficientNet) + Residual decoder links 0.976 (0747  [0.849  (0.864  [0.836
¢ 2x 2 ] t — Concatenate + Channel attention & rebalanced decoder filters 0.976 [0.749  0.849  |0.861  |0.840
1 : ) F,—’l*»l — Bilinear up 2x2
X 2 3 — Conv 1x1

—> Channel attention

Supplementary Figure 5: Final model architecture. A pre-trained EfficientNet B2 encoder is deployed for the contraction
path of the U-Net. Arrows denote operations and rectangles represent the resulting tensor. Crossing of arrows represents
element-wise addition.
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Manually segmented ground truth data

Status in the middle of the project

* Intersection over union (IOU) of 0.3 for 10 classes

* =300 training images BUT high class imbalance
Architecture optimization and additional labeling of previously unlabeled Image Human

regions/tiles of high entropy (e.g. bare versus slime as bare is underrepresented)

Prediction
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o
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Segmentation performance

Image Tile Ground truth Prediction Image Tile Ground truth Prediction Image Tile Ground truth Prediction
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‘Supplementary Table 2: Segmentation performance of the enhanced U-Net. Metrics are reported as the class-wise mean . n
of image tiles from the validation set. Best values (> 85 %) are highlighted.
Encrusting|Calcareous [Colonial |Arborescent [Solitary [?
Class  [Bare Slime Barnacle [Sponge CnidariaMean
Bryozoan {Tubeworm [Tunicate [Bryozoan |Tunicate
Accuracy|0.986  0.911 0.978 0.981 0.969 0.976  |0.988 0.982 0.999 [0.993 (0.976 . .
IoU 0.908 [0.807 0.772 0.644 0.667  |0.666 0.879 0.505 0.966 [0.672 |0.749 -
F1 0.952  [0.893 0.872 0.784 0.800 |0.800 .936 0.671 0.983 |0.804 |0.849
Precision|0.932  |0.885 0.861 0.805 0.862 (0.801 .926 0.709 0.974 |0.858 |0.861 ¥ i
Recall [0.973  |0.901 0.882 0.764 0.747 |0.799 .946 0.637 0.991 |0.756 |0.840
D

’ )
' <!
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Semantic segmentation of fouling in the field

t-SNE (t-distributed stochastic neighbor embedding) of the high-level features extracted by the encoder path of U-Net
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Estimation of sampling error in CPCe annotation

Trial 1 Trial 2 Trial 3

Supplementary Table 1: Error of random point annotation. The class-wise random point annotation error was quantified
by the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the left-out probability (LOP). Metrics
were obtained by uniform sampling of n = 50 random points with segmentation masks from manual annotation and N =

1000 repetitions per image. All values are given as percentage. Reported uncertainties refer to the standard error.

) Encrusting [Calcareous|Colonial Arborescent|Solitary o
Class Bare Slime ) Barnacle (Sponge ) Cnidaria
Bryozoan |Tubeworm|Tunicate Bryozoan |Tunicate
MAE 3.94+0.023.72+0.01) 2.58 +£0.01| 1.55+0.03| 2.83 £0.01] 4.74 +0.002.17 +£0.01] 2.17+0.01] 4.12+0.01| 4.40+ 0.00
MAPE 57+0.0 48.0+04 729404 113.6+0.5 673+04 20.1+00 60.0+05 88.1+0.5 33.6+02 244+0.0
LOP 0.0+0.00 174+0.20 279+0.3 53.7+£03] 300+£02 00+0.0 234+0.2 384+0.3 62+0.1 00%0.0

20 40 60 20 40 60 80 100
Coverage [%] Coverage [%] Coverage [%]

Bare WM Encrusting Bryozoan Colonial Tunicate WM Sponge = Solitary Tunicate
mmm Slime W Calcareous Tubeworm Barnacle wem Arborescent Bryozoan W Cnidaria Soft

* Fully segmented panel image was used to “simulate” CPCe sampling accuracy
* While frequently occurring species that cover larger areas like bare substrate, barnacles, slime or tunicates has
lower left-out probabilities, small objects like tubeworms have a high leaving out probability
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Fouling progression analysis

Criticizm on the method: Bias for top surface layer, but fouling organisms with surface contact relevant

Month 1 Month 2 Month 3

\
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!

Month 5

Coating P
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50 50 50 50 50 100
Coverage [%] Coverage [%] Coverage [%] Coverage [%] Coverage [%] Coverage [%] Coverage [%] Cove rage by Organisms iS
changing over time
Bars: left U-Net, right human
Bare EEN Encrusting Bryozoan Colonial Tunicate EEm Sponge Il Solitary Tunicate ~ EEE Others

mm Slime mm Calcareous Tubeworm Barnacle B Arborescent Bryozoan B Cnidaria Soft

15

L. Krause, E. Manderfeld, P. Gnutt, L. Vogler, A. Wassick, K. Richard, M. Rudolph, K. Hunsucker, G. Swain, B. Rosenhahn, A. Rosenhahn, Biofouling 2023, 39(1), 64



RUHR-UNIVERSITY BOCHUM

Point resolved fouling progression analysis
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Summary

* Very early fouling dominated e.g. by diatoms can be analyzed by image detection using a binary
classifier

* Labeling and analysis of fouling communities on surfaces can be accomplished by semantic
segmentation with deep learning

Challenges

* Semantic segmentation has a bias towards the top layer of fouling. Analysis of time series can help.

* Many of the larger species (e.g. solitary tunicates, arborescent bryozoans) collapse if the panels are
retrieved from water. Is the assessment accurate? (Similar question applies to CPCe method and to a
lesser degree to for ASTM assessment). Does the analysis of underwater (diver) images help?

* If multiple species are grown symbiotically as new entity, how should such cases be
analyzed/interpreted?

* Need to define how can the data be reduced into “heavy fouling”, "light fouling”, and “clean coatings”.

Advantages
* Once established, it may serve as fast and reliable method for fouling assessment with limited human
bias
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