co selektope®

Advancing Marine Coating Formulations with Selektope®

-Insights from Silyl Acrylate Systems Ida Friberg

Selektope®

-Keeps the Hull Barnacle-Free

- Organic molecule (medetomidine)
- Efficient against barnacles in low concentrations
 - 0.1 % by weight
- Non-lethal, temporary and reversible effect
- Biodegradable
- Tested and approved
 - On over 3000 vessels
 - In more than 30 commercial paints
 - By 7 of 9 the largest paint companies
- As little as 10% barnacle coverage on the hull requires 36% extra shaft power to keep the same speed*
- 1/3 of inspected ships had more than 10% barnacles based on in-docking study** made by Safinah Group

Target organism and mode of action of Selektope Making barnacle larvae swim away.

Receptor stimulation

Selektope stimulates the octopamine receptor in barnacle larvae.

Repelling mode of action

Their legs will start to kick with a frequency of around 100/min. Interfering with the surface exploration behavior necessary to settle.

Temporary effect

The effect is reversible and lasts for 2-3 hours. There are no long-lasting effects on the larvae.

The settled larva metamorphose

into hard shelled barnacles.

Octopamine Receptors from the Barnacle Balanus improvisus Are Activated by the α2-Adrenoceptor Agonist Medetomidine Ulrika Lind, Magnus Alm Rosenblad, Linda Hasselberg Frank, Susanna Falkbring, Lars Brive, Jonne M. Laurila, Katariina Pohjanoksa, Anne Vuorenpa¨a¨, Jyrki P. Kukkonen, Lina Gunnarsson. Mika Scheinin, Lena G. E. Mårtensson Lindblad, and Anders Blomberg

Silyl Acrylate Co-Polymer (SAP) -based Coatings

Polishing

- SAP is a self-polishing coating (SPC) type widely used for marine antifouling.
- Biocides for fouling control.
- Hydrolysis in sea water
 - > Controlled polishing
 - > Maintained thin leach layer
 - > Consistent biocide release
- Proper formulation principles important for achieving long shelf-life
 - > Sensitive to water

Gelation in Silyl Acrylates – Root Cause

Silyl acrylates polymer hydrolyse in presence of water by design – It happens slowly, in all silyl acrylate paints when water is present, but is slow enough not to cause a big problem at least not at moderate temperatures.

Selektope® catalyses the hydrolysis - the reaction goes faster.

Zn²⁺

Hydrolysed polymer can crosslink in presence of metal ions, such as Zn²⁺ and Cu²⁺, causing gelation.

-TEOS and pTSI

TEOS

TEOS – water scavenger

pTSI

pTSI – water scavenger

pTSI - ethanol scavenger

Minimize water content in wet paint

- Add water scavenger before adding Selektope
 - TEOS*
 - pTSI*

Minimize content of free Selektope

- Adsorb Selektope to carrier particles (e.g. ZnO, SiO₂)
 - Adsorption sites must be available
 - Add Selektope early in paint production
 - Keep the content of polar and protic solvents <5 wt.%

-Selektope Adsorption on Inorganic Pigments

Available surface area

-Selektope Adsorption on/Desorption from Inorganic Pigments

^{*} Percentage of total amount of Selektope in the sample

Suggested Formulation Procedure

-for High In-Can Stability

Water removal
Addition of water
scavenger

- Selektope adsorption

 Selektope

 Selektope

 Selektope
- Other components

 SAP Other

 Sio_Rosin
 Zno TEOS
 DISI Selektope

Silyl Acrylate Paint In-Can Stability Testing

-Tests with Model Formulations

Viscosity over time (0.1% Selektope accelerated at 52°C)

TEOS reduces gelation rate – but more can be done!

Additives to prevent gelation:

• TEOS – water scavenger

Test parameters:

- 0.1% Selektope
- Temp. 52°C (accelerated test)
- 1 eq TEOS and with respect to the calc. amount of water formed

Silyl Acrylate Paint In-Can Stability Testing

-Tests with Model Formulations

Viscosity over time (0.1% Selektope accelerated at 52°C)

The combination of **TEOS**, **pTSI** and **hydrophilic silica** efficiently slows down the gelation

Additives to prevent gelation:

- TEOS water scavenger
- pTSI water and Selektope scavenger
- Hydrophilic silica high Selektope adsorption capacity

Test parameters:

- 0.1% Selektope
- Temp. 52°C (accelerated test)
- 1 eq TEOS and pTSI with respect to the calc. amount of water formed

Field Test to Prove Selektope Release

-Swedish West Coast, 83 days

Silyl acrylate based coatings

Field Test to Prove Selektope Release

-Swedish West Coast, 83 days

Zinc acrylate based coatings

Conclusions

-Successful Inclusion of Selektope® in Silyl Acrylate Antifouling

- Stable Selektope-containing silyl acrylate-based paint is made by the following key principles:
 - Minimize water
 - Minimize free Selektope
- The combined use of pTSI and TEOS results in:
 - Efficiently improved in-can stability of silyl acrylatebased paint containing Selektope.
 - Maintained release of Selektope from silyl acrylatebased coatings.
- Addition of hydrophilic silica further improves incan stability
 - Selektope adsorbs on the surface of the silica
- Selektope is a biocide proven to efficiently repel barnacles and is successfully commercialized in multiple SPCs including silyl acrylate-based paint.

Thank you!

Questions?

