Monitoring of antifouling copper in target marinas

Kevin Long – Regulatory Compliance Limited

Mhàs

- Before being allowed on the market, all biocidal products, including antifouling biocidal products, are assessed for their risk to Humans and the Environment
- Environmental Risk Assessment principle;
- If what you can expect to see in the environment is a higher level than what you consider safe, that's not good
- Or, put another way
- ► If Predicted Environmental Concentration Predicted No Effect Concentration
 >1
 - The product is considered to have an unacceptable risk, and is not authorised for use
- Environmental concentrations are "Predicted" using mathematical models

The Modelling

- For most Product Types (e.g. disinfectants, insecticides, preservatives)
 Environmental Concentrations are estimated on a Regional Scale
- Models are built upon a lot of assumptions
 - Number of households in a Region, Population of the Region, How frequently toilets get cleaned, How many mosquitoes need killing, How much biocide works its way out of a Sewage Treatment Plant, etc., etc., etc...
 - ► Few of these assumptions are "testable"
 - "Testable" (adjective): able to be tested or tried: "a testable hypothesis" · "empirically testable predictions" · "testable models"
- Antifouling Coatings are almost unique
 - Concentrations of biocides from paints intended for the yacht market are estimated on the Local Scale, inside the confines of specific marinas, selected based upon certain criteria

Testable

Using MAMPEC, biocide (specifically copper) concentrations in 17 Baltic
 Transition and 38 Baltic marinas are calculated

Marine Compartment											
Environmental Emission Scenarios for Product Type 21: Biocides used as antifouling products											
Liiviioiiiieii	Lai		ssion scenarios io	Floud	ct Type 2	T. Diocid	es useu	as antin	ouning p	Toducts	,
PNEC Values											
PNECsw Inside Marina (ug/l)					2.6						
PNECsed Inside Marina (ug/g			98.8								
PNECsw Surrounding Marina (ug/l)					1.15						
PNECsed Surrounding Marina			98.8								
- Neosca Sarroarianig Franka					20.0						
Baltic Transition Scenario Average PEC values and Risk Characterisation											
		a		PECsw	PECsusp.	PECsw	PECsusp.		PEC:PNEC	PEC:PNEC	DEC-DNEC
	_	Code		inside	inside	surrounding	surroundin	PEC:PNEC	SUSP	SW	SUSP
	흔	0		marina	marina	(average	g	SW inside	inside	surroundi	surroundi
Scenario	cear	2	Substance	(average,	(average,	dissolved,	(average,	marina	marina	ng	ng
	S	벌		dissolved,	ug/g dw)	ug/l)	ug/g dw)		marma	ng.	ng
		Country		ug/l)	ug/g uw/	ug/i/	ug/g uw/				
- 10 - 10 - 11 - 12			_					0.055.04	4 005 00	0.505.04	4 665 04
Baltic Transition Marina 01		10	Copper	2.40E+00	1.88E+02	1.10E+00	1.64E+01		1.90E+00		1.66E-01
Baltic Transition Marina 02			Copper	2.55E+00	2.07E+02	1.11E+00	1.72E+01	9.81E-01	2.10E+00		1.74E-01
Baltic Transition Marina 03	DE		Copper	1.99E+00	1.34E+02	1.10E+00	1.64E+01		1.35E+00		1.66E-01
Baltic Transition Marina 04	DK		Copper	1.16E+00	2.35E+01	1.10E+00	1.62E+01	4.45E-01	2.38E-01	9.57E-01	1.64E-01
Baltic Transition Marina 05	DK	_	Copper	3.22E+00	2.95E+02	1.11E+00	1.69E+01		2.99E+00	9.62E-01	1.71E-01
Baltic Transition Marina 06	DK	_	Copper	2.47E+00	1.97E+02	1.10E+00	1.65E+01		2.00E+00	9.59E-01	1.67E-01
Baltic Transition Marina 07	DK		Copper	6.92E+00	7.84E+02	1.10E+00	1.67E+01		7.93E+00	9.61E-01	1.69E-01
Baltic Transition Marina 08		10	Copper	2.13E+00	1.52E+02	1.10E+00	1.63E+01		1.54E+00	9.58E-01	1.65E-01
Baltic Transition Marina 09		11	Copper	7.21E+00	8.23E+02	1.11E+00	1.69E+01		8.33E+00	9.62E-01	1.71E-01
Baltic Transition Marina 10	DK		Copper	3.99E+00	3.98E+02	1.10E+00	1.65E+01		4.03E+00		1.67E-01
Baltic Transition Marina 11		15	Copper	1.33E+00	4.61E+01	1.11E+00	1.75E+01	5.11E-01	4.67E-01	9.66E-01	1.77E-01
Baltic Transition Marina 12		11	Copper	3.64E+00	3.53E+02	1.10E+00	1.67E+01		3.57E+00	9.61E-01	1.70E-01
Baltic Transition Marina 13	DE		Copper	2.64E+00	2.19E+02	1.10E+00	1.66E+01		2.22E+00	9.60E-01	1.68E-01
Baltic Transition Marina 14	DE		Copper	2.15E+00	1.55E+02	1.10E+00	1.64E+01		1.57E+00	9.58E-01	1.66E-01
Baltic Transition Marina 15	DE		Copper	4.50E+00	4.64E+02	1.10E+00	1.62E+01		4.70E+00		1.64E-01
Baltic Transition Marina 16	DK	_	Copper	1.26E+00	3.77E+01	1.10E+00	1.66E+01	4.86E-01	3.81E-01	9.60E-01	1.68E-01
Baltic Transition Marina 17	SE	3	Copper	1.74E+00	1.01E+02	1.10E+00	1.64E+01	6.69E-01	1.02E+00		1.66E-01
			90th Percentile Value		5.92E+02	1.11E+00	1.71E+01	2.10E+00	5.99E+00	9.63E-01	1.73E-01
				7.21E+00	8.23E+02	1.11E+00	1.75E+01	2.77E+00	8.33E+00	9.66E-01	1.77E-01

Testable

Using MAMPEC, biocide (specifically copper) concentrations in 17 Baltic
 Transition and 38 Baltic marinas are calculated

Predicted Environmental Concentration

- PEC is readily testable, it can be measured
 - Copper, as an element, is simple to analyse
 - Copper, as an element, is stable in stored samples
- Antifouling use in the Baltic is a mature market
 - Yacht owners who need them, use them
 - Copper levels are now as they were historically, or will be in the future (with caveats)
 - Picture of "before" BPR removes products from the market because of the approval status

Not easily testable, since site specific properties modify the impact of copper

4.6 mg/I DOC (typical in Baltic region) leads to a PNEC = 4.3 µg Cu/L

Survey #1 (September 2023)

Malmo Limhamns Småbåtshamn (Baltic Transition, SE3)

PECs (LR = 10 µg /cm²/day) Dissolved: 1.74 µg /L

Hasle Marina 2 (Baltic, DK15)

PECs (LR = $10 \mu g / cm^2 / day$) Dissolved: $8.92 \mu g / L$

Boderne Havn (Baltic, DK12)

Nørrekås Lystbådehavn (Baltic, DK13)

PECs (LR = 10 µg /cm²/day) Dissolved: 24.4 µg /L

Survey #2 (July 2025)

Morarna Road Marina (Sweden, SE10)

PECs (LR = 10 µg /cm²/day) Dissolved: 7.8 µg /L

Uutela Marina (Finland, FI7)

PECs (LR = 10 µg /cm²/day) Dissolved: 5.3 µg /L

Åminne marina (Finland, FI5)

PECs (LR = 10 µg /cm²/day) Dissolved: 7.2 µg /L

Pärnu marina (Estonia, EE8)

PECs (LR = $10 \mu g / cm^2 / day$) Dissolved: $2.9 \mu g / L$

Klaipeda Marina (Lithuania, LT1)

PECs (LR = 10 µg /cm²/day) Dissolved: 6.3 µg /L

Ventspils Yacht Harbour (Latvia, LV2)

PECs (LR = 10 µg /cm²/day) Dissolved: 4.7 µg /L

What does this all mean?

- The Risk Assessment modelling is clearly inaccurate
- Products will be (not) approved
 - Not because there is a real problem
 - But because the modelling is poor
 - Not Fit for Purpose
- BPR has the potential to ensure yacht owners use less effective products to protect their vessels
- Poorly protected vessels = higher risk of invasion by NIS
- Higher risk of invasion by NIS = increased risk of entire ecosystem change
- Current Risk Assessment paradigm aims to protect the aquatic community in heavily populated marinas
 - A community already impacted by the ongoing human activity
- Ironically, particularly vulnerable areas are beauty spots and nature reserves where these poorly protected vessels will go for a day-trip

What's going wrong?

- MAMPEC works, when parameterised well
 - e.g. Malmo Limhamns Småbåtshamn
- MAMPEC is only as good as the information it is based on
 - GIGO (garbage in, garbage out)
- MAMPEC requires some 30 variables to define a marina
- To obtain useful results many of those need to be correct
 - Water exchange incorrect?
 - Overpredict PECs
 - Leach rate wrong?
 - Overpredict PECs
 - Boat size/density wrong?
 - Overpredict PECs

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ...

—Charles Babbage, Passages from the Life of a Philosopher

Thank you

Questions?