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Problem Statement and Intention

Fouling is one of the largest unresolved cost driver in shipping where the 
absence of one single solution has created a huge and diverse market

It is our believe, that AI will close the gap in marine fouling research by 
allowing to optimize the unseen below the water with data science

Applying the right AI image segmentation architecture to extract data from 
visual underwater content is the highest discipline.

In order to understand marine fouling in shipping, you require data... a lot of 
data to contextualize the impact of risk factors before it attaches to the hull 



Big Questions About Biofouling

1) What kind of fouling is there?

2) How much of what fouling is there?

3) How does the fouling impact the ship performance?

1) How big is the fouling?

2) Where is the fouling located?

4) What external factor influenced the fouling to be there?

1)    Can we identify patterns of fouling based on external factors?

2)    Can we measure the effectiveness of anti-fouling paints?

5) Is the fouling invasive? 

6) Can we predict biofouling on ships in advance? 



A brief excurse to 80 years 
of biofouling science



Biofouling Literature Analysis
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rising concern over 
invasive species

Basic fouling 
description

introduce more 
technical terms 

methodological leap from 
descriptive to predictive
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Biofouling Literature Analysis
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Biofouling Literature Analysis

161 biofouling

21 ship coating

14 fouling in ports

13 underwater image enhancement

11 image segmentation underwater

Quantitative

Qualitative

17 studies 1-3 ships

15 studies > 5 Ships

Max -> 80 ships

3rd quartile 21 ships

Average 17 ships

SUM 489 Ships

?

?



A Brief ROV Market Overview



Micro ROV Overview

Capocci et al. (2017)



Biofouling Literature Analysis

Source: Stein (2023)



Micro ROV Market Overview

Kingma et al. (2025) 88 ROV Systems micro and intervention class

Stein (2023) 22 most prominent micro systems

Complete Market Overview on micro ROV systeme 2025
-> 48 manufacteurs
-> 133 micro ROV systems
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Market Observation most predominant ROVs



Image Segmentation 
Architecture Model 

Comparison



Understand AI BEFORE We Talk About It

Source. Vadapalli (2025)Source: Abdelnaser (2024) 



Understand The Magnitude

1997
Deep Blue vs. Kasparov

2006
AlphaGo vs. Sedol

25 years ago, successful AI 
calculation exceeded the 
handling of  amount of 
atoms in the universe…

… how hard can it be to 
predict biofouling growth 
patterns on tiny box shapes 
(ships) in a confined space 
(oceans)…

… if we ask the right questions?  



Understand AI BEFORE You Talk About It

Source:Wang (2020)

Source: Giattino (2024)



Overview of Image Segmentation Architectures



AI Data 2021
Precision MIoU Data

Bloomfield et al (2021) 0.7960 - 10.263

Islan et al. (2020) 0.8697 0.8414 1.525

O’Byrne et al. (2018) 0.9400 0.8700 2.500

Liu & Fang (2020) - 0.6465 2.237

Our approach 0.9500 0.8500 1.128

Chin et al (2021) identified a variety of marine growth 
including lkelp and oysters etc.

Architecture MIoU* data

PSPNet .45

1.128

Simple Unet .51

Unet with encoder .54

SUIMNet with encoder .73

Our approach .85



Class View Layer View

Marine Fouling Image Segmentation

The key to successful underwater AI analysis lies in the labeling of the core training data.
This process must be correct, accurate and consistent to achieve valid and robust results.



Technical Demo Examples
Tunicates



Marine Fouling Image Segmentation

ViT

U-Net

SUIM Net



Labelling classes summary
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Comparison Summary Label Class
YOLO 8 YOLO 11 Vision Transformer UNet SIUMNet

Year 2024 2025 2020 2015 2018

Global mIoU 0.191000 0.220000 0.293050 0.355979 0.080257

Pixel accuracy 0.335000 0.335000 0.679211 0.756594 -

Average FPS 92.000 96.000 79.811 40.332 75.109

background 0.020000* 0.020000* 0.552615 0.627898 0.105474

Barnacles 0.280000 0.440000 0.278368 0.270012 0.015103

Bryozoa 0.270000 0.500000 0.099924 0.212970 0.000000

heavy_slime 0.200000 0.240000 0.241472 0.266231 0.005831

Hydroids 0.010000 0.120000 0.192138 0.180790 0.055604

light_slime 0.320000 0.410000 0.663962 0.760580 0.293367

Mussels 0.450000 0.290000 0.513417 0.723532 0.275035

Oyster 0.000000 0.000000 0.000000 0.000000 0.000000

Slime 0.170000 0.220000 0.331678 0.468613 0.030817

Tubeworms 0.000000 0.000000 0.000000 0.000000 0.000000

Tunicates 0.580000 0.440000 0.643021 0.761122 0.261727

white_tunicates 0.000000 0.000000 0.000000 0.000000 0.000377

* YOLO ignores the background, non comparible



Comparison Summary Label Class
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The AI Solution to Biofouling Management

We intent to have the 
largest underwater image 
dataset of labeled 
biofouling on ships

Very Big UNet for 
label propagation to 
allow auto labeling

YOLO or faster 
RCNN for edge-
device detection 

Synthetic image 
pipeline for semi-
supervised learning

Largest dataset of 
labeled biofouling 
classes from 
merchant ships

The super fast detection speed 
will allow for edge device 
application (ROV, Smartphone) 

Solves the limited data 
issue. System will train 
itself after a while. 

Apply strong but slow 
Unet characteristics in 
the labeling process

Scary things 
start here...



Capturing data to
understanding biofouling 



Our Approach

Routing Factors

Performance Factors

AI Data Extraction

Environmental Factors

Biofouling Risk Factor

Confirming ROV inspection



Updated Greybox Model Approach

de Haasa et al. (2024)

Advanced live routing evaluation based on time and speed 
Additional Biofouling Factors

Chlorophyll (mg/m³)

Iron (nmol/L)

Phyto (mg C/m³)

Oxygen (µmol/kg)

Ph

Phytoplankton (mg/m³)

Phosphate (µmol/L)

Silicate (µmol/L)

Salinity (g/kg)

Temperature (°C)



Comparison Summary Label Class



Comparison Summary Label Class



Comparison Summary Label Class



Comparison Summary Label Class



Comparison Summary Label Class



Comparison Summary Label Class



What comes next?



Biofouling Training Image Sythetisation 

Mai et al. (2024)Synthetic image 
pipeline for semi-
supervised learning

Barbosa and Apolinario (2025)

Synthetic image 
pipeline for semi-
supervised learning

In the near future, 
we will have our AI 
network train itself
on synthetic training 
images of biofouling. 



Neural Radience Fields

By applying a technique in AI 
image manipulation called 
Neural Radience Fields (NeRF) 
we are able to extract/ 
estimate 3D depth 
information from 2D 
inspection images, by image 
depth map generation.  

With additional research, 
this will allow us to 
understand the size of 
biofouling on a ship hull. 



Reverse Engineered CDF Models

In order to understand the biofouling impact on fuel
consumption, we are working on understanding 
the impact on fouling position on a ship hull.
Therefore we test our own 3D hull models from
drawings and generative AI for CFD calculations.    



SLAM Projection 

??? LIFT-SLAM (introduced by Bruno and Colombini, 2021)
??? V-SLAM



Big Questions About Biofouling

1) What kind of fouling is there?

2) How much of what fouling is there?

3) How does the fouling impact the ship performance?

1) How big is the fouling?

2) Where is the fouling located?

4) What external factor influenced the fouling to be there?

1)    Can we identify patterns of fouling based on external factors?

2)    Can we measure the effectiveness of anti-fouling paints?

5) Is the fouling invasive? 

6) Can we predict biofouling on ships in advance? 
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